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Abstract—Although stochastic point process theory has been 

successfully applied in many fields of knowledge, in power 
systems reliability it has not received so much attention what is 
reflected in the low number of reported applications. This may be 
due to some common misconceptions about the modeling of 
repairable components which falsely show this method is the 
same than other popular ones. All these misconceptions originate 
in the incorrect practice of analyzing the reliability of repairable 
components using concepts that were developed only for non 
repairable ones and, specifically, in the misleading idea that a 
stationary random process model can represent a non stationary 
random process. This paper discusses these misconceptions 
expecting clarity of concepts can foster the development of more 
applications of this theory in power systems reliability. 

Index Terms— Point processes, Poisson processes, power 
system reliability, reliability, stochastic processes. 

I.  INTRODUCTION 

INCE long ago, stochastic point process (SPP) theory has 
been successfully applied in many fields of knowledge 

such as biology, physics, queuing analysis, engineering 
reliability, etc. [1]-[3]; statistical procedures for applying this 
type of modeling to real problems have been developed and 
several SPP models have gained wide acceptance. On the 
other hand, SPP has not received as much attention in power 
system reliability as in other fields and only a small number of 
applications have been reported, e. g. [4]–[10]. This may be 
due to some common misconceptions about the reliability 
modeling of repairable components. In particular, it is often 
believed that SPP is identical to others widely used such as 
the analyses based on the Weibull distribution. The aim of this 
paper is to bring some clarity about SPP theory by discussing 
the origin of these misconceptions. 

II.  REVIEW OF BASIC CONCEPTS [11]-[13] 

Before discussing the misconceptions, it is necessary to 
review some fundamental concepts about random processes. 
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A.  Definitions 

The term random process denotes a random phenomenon 
that is observed in the real world. The term stochastic process 
is reserved for a kind of modeling for random processes. The 
period of interest for studying a random process is denoted t . 
A random variable x  represents the random process.  

B.  Stationary and Homogeneous Random Process 

A random process is stationary if their statistical 
properties, the expectation [ ]E x  and the variance [ ]V x , are 

constant during t . The opposite is true for a non stationary 
random process.  

A random process is time homogeneous if its probability 
density function ( )f x  does not change during t . The 

opposite is true for a non homogeneous random process. 
Homogeneous and stationary are interchangeable terms 

because: i. If ( )f x  does not change during t  then [ ]E x  and 

[ ]V x  are constant during this period.  ii. If [ ]E x  and [ ]V x  

are constant during t  it is necessary that ( )f x  does not 

change during this period. Non homogeneous and non 
stationary are also interchangeable terms. 

C.  Distribution Model 

A distribution is a mathematical model for a stationary 
random process in which t  does not explicitly appear. A 
distribution is defined by means of a probability density 
function ( )f x  which do not change during t . All 

mathematical functions used as distributions produce [ ]E x  

and [ ]V x  because this kind of model always refers to a 

stationary random process; hence [ ]E x  and [ ]V x are only 

functions of the distribution parameter which are also 
constant. 

D.  Stochastic Process Model 

A stochastic process is a mathematical model for a 
stationary or non-stationary random process in which t  
appears explicitly. The random variable that represents the 
process can then be written tx  and t  is called the process 

index. Thus, a stochastic process is a collection of random 
variables

1 2
, , ,

Nt t tx x xL , one for each value of the index t . 

There is thus, a collection of probability density 
functions

1 2
( ), ( ), , ( )

Nt t tf x f x f xL  one for each random 
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variable. If for a given it  the statistics of the random process 

are constant, it is stationary and time homogeneous because 
( )

it
f x  do not change during this period. The opposite is true 

for a non-stationary non-homogeneous random process. 

E.  How to Select a Model for a Random Process [14]-[16] 

Fig. 1 shows the basic procedure for selecting a model that 
is a proper representation of a random process. Omitting any 
of the three steps of this procedure can lead to an unsuitable 
model. A sample 1 2, , , nx x xL  is the input data for this 

procedure. 
The first step is to determine whether the random process 

is stationary or non stationary. Several statistical methods are 
available for this. However, only trend tests [17] are discussed 
because only sequences of times to failure ( ttf ) and times to 

repair ( ttr ) are considered in this paper.  
Fig. 2 shows a simple trend test where the bar graph shows 

the chronologically ordered inter arrival time magnitudes. If 
this graph shows a pattern of increasing or decreasing inter 
arrival time magnitudes, then the random process is deemed 
to have a tendency or that it is non stationary. If this test does 
not show that the random process has a tendency, it is deemed 
to be stationary.  The basic condition to guarantee the validity 
of a trend test is to keep the chronological order in which the 
inter arrival times occurred.  

If the sample data for the random process shows that it is 
non stationary, a non stationary stochastic process model has 
to be selected. This can be done by applying the procedures 
for parameter estimation and a goodness of fit test, which are 
particular for each model in this class and should not be 
confused with the ones used for distributions. Two important 
families of non-stationary stochastic processes are the non-
homogeneous Markov chains and the non-homogeneous 
Poisson processes.  

If the sample data for the random process under study 
shows it is stationary, is necessary to apply a test for 
independency such as the scatter diagram or the correlation 
plot [18]. Two cases arise here:  
1. If the sample data is not independent, a model for 

dependent events has to be selected. An example of these 
kinds of models is the branching point process or time 
series. 

2 If the sample data is independent, a distribution must be 
selected if t  is not necessary to explain the random 
process. If that is not the case, a stationary stochastic 
process must be selected. In both cases it is necessary to 
apply the procedures for parameter estimation and a 
goodness of fit test to select the distribution or the 
stationary stochastic process model that can represent the 
random process under study. 
The importance of performing trend and independency 

tests is discussed by Ascher and Hansen [15] who point out 
that: 

 

 
Fig. 1. Procedure to select a model for a random process 
 

1. It is incorrect to fit a sample of inter arrival times to a 
distribution model without performing first a trend test to 
check that the random process from which the sample was 
taken is stationary. Goodness of fit tests sorts out sample 
values by magnitude therefore losing the chronological 
order in which they occurred.  

2. It is incorrect to fit a sample of inter arrival times to a 
distribution model without performing first an 
independency test because the goodness of fit tests, such 
as chi square and Kolmogorov–Smirnov, were developed 
assuming sample independency. This also applies to the 
maximum likelihood method for parameter estimation. 

 
Fig. 2. Bar graphs of inter arrival times magnitudes for trend test 
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III.  RELIABILITY ANALYSIS OF NON REPARABLE COMPONENTS 

A non-repairable component is one that dies when the first 
failure 1f  occur. The classical model for this kind of 

component is shown in Fig. 3. It only considers two operating 
states and ttf is used to represent the failure process.  

 
Fig. 3. Operating states of a non-repairable component 

 
Because a non-repairable component can fail only once, a 

sample 1 2, , , nttf ttf ttfL  obtained from a group of identical 

components that have failed is necessary to build its reliability 
model. Fig 4 shows such a sample. These values are not a 
ordered in a chronological sequence and each ittf  has no 

connection with the other sample values. Furthermore, the 
instant when the observation of the operating time was taken 
does not matter. 

 
Fig. 4. Sample of ttf  of a group of identical non-repairable components 

 
The ttf sample is fitted to a distribution ( )ttff t  that is 

called life model. ( )ttfF t  gives the probability of failure and 

its complement ( ) 1 ( )ttf ttfR t F t= − is the reliability. 

One important aspect to study for non-repairable 
components is the risk that a component that has not failed 
until a given time t  fails after it. This is a conditional 
probability that leads to the famous equation for ( )tλ  called 

“failure rate” or “hazard rate” [19], [20]: 

0

( )( ) ( )
( ) lim (1)

. ( ) [1 ( )]
ttf

t
ttf

f tR t R t t
t

t R t F tΔ →

− + Δλ = =
Δ −

 

Depending on the kind of distribution used for the life 
model or the values of its parameters, ( )tλ  can be constant or 

a function of time; only for the exponential distribution ( )tλ  

is a constant, for a Gaussian distribution it is an increasing 
function of time, etc.  

For a Weibull distribution with scale parameter λ  and 
shape parameter β , ( )tλ is defined by (2). As shown in Fig. 5 

the form of ( )tλ depends on the value of β .  

1( ) (2)t tβ−λ = λβ  

Equation (2) has a ubiquitous place in reliability. 
Unfortunately, as will be discussed latter, this has led some 
authors to forget its real meaning and origin. 

 
Fig. 5. Failure rate for a non-repairable component with Weibull life model 

IV.  RELIABILITY ANALYSIS OF REPAIRABLE COMPONENTS 

A repairable component is one that can withstand a 
sequence of failures 1 2, , , nf f fL . Its simplest representation 

in terms of reliability is the two-state diagram shown in Fig. 6.  
The independent processes of failures and repairs can be 

illustrated by the operating sequence shown below the two 
state diagram in Fig. 6. Unlike the case of a non-repairable 
component, in this case, the sample values 1 2, , , nttf ttf ttfL  

and 1 2, , , nttr ttr ttrL  must be chronologically ordered 

sequences to keep the tendency of the failure and repair 
processes.  

The two main families of models that have been applied to 
the reliability analysis of repairable components are discussed 
below. 

 
Fig. 6. Two state diagram and operating sequence of a repairable component 

 
A.  Markov Chain Models 

The term Markov chain refers here to a family of models 
which couples the processes of failures and repairs in a two 
state diagram representation such as the one shown in Fig. 6. 
This definition is adopted because there is no agreement about 
the names for the different extensions to the basic continuous-
time exponential Markov chain model.  
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1) Homogeneous Exponential Markov Chain 

If the samples of  ttf  and ttr show no tendency, are 

independent and meet a goodness of fit test for exponential 

distributions with parameters 1/ ttf=λ  and 1/ ttr=μ , 

respectively, the coupled process of failures and repairs is 
described by [19]-[20]: 

1 1

2 2

( ) / ( )
(3 )

( ) / ( )

d P t d t P t

d P t d t P t

− λ μ⎛ ⎞ ⎛ ⎞⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟λ − μ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

1( )P t  and 2 ( )P t are the probabilities of finding the 

component in states 1 (good) and 2 (failed), respectively. λ  
and  μ  are called “failure rate” and “repair rate”, 

respectively, or more generally “transition rates”. Overlines 
symbols denote a statistical mean. The most appealing 
characteristic of this model is that it has an analytical solution. 

This model is memoryless or Markovian, i.e. the transition 
to another state depends only on the current state and the 
trajectory before reaching the present state does not matter. 
This model is commonly called homogeneous Markov process 
or homogeneous Markov chain. 

2) General Homogeneous Markov Chain 

In this case, samples of ttf and ttr  show no tendency, are 

independent and one or both of them meet the goodness of fit 
test with a non exponential distribution. When both 
distributions are not exponential, this model is called “non 
Markovian process” and for the case where one is exponential 
but the other not it is called “semi-Markov process”. We 
adopt the name general homogeneous Markov chain because 
“general” indicates that any kind of distributions can be used 
and “homogeneous” specifies that these distributions do not 
change with time. This model does not have the memoryless 
property i. e. it is non-Markovian And cannot be solved using 
(3). Solutions methods include Monte Carlo simulation, the 
device of stages and the technique of adding variables [19], 
[20].  

This model is very important because it is unusual for both 
the failure and repair distributions to be exponential. While 
the failure process for non-aged components generally fits an 
exponential distribution, repair times are generally 
lognormally distributed [21], [22]. 

3) Non Homogeneous Markov Chain 

In this case, λ  and μ in (3) are not constant but functions 

of time. The failure and repair processes are thus not 
homogeneous because as time evolves the expected number 
of failures and the expected number of repairs are not 
constant. Therefore, the failure and repair processes cannot be 
represented by means of distributions. This model also does 
not have the memoryless property i. e. it is non-Markovian.  

Popular solutions to this process are numerical methods of 
differential equations and sequential Monte Carlo simulation. 
However, it has problems for adjusting the operating times 
and of tractability for some types of time varying rates [23].  

B.  SPP Models 

 As shown in Fig. 7, this kind of modeling decouples the 
processes of failures and repairs of the component. Failures 
and repairs are represented by sequences of events that arrive 
independently.  

 
Fig. 7. In SPP modeling the process of failures and repairs are uncoupled 

 
In many applications the repair process is neglected 

because the repair times are much shorter than the typical 
interval of time separating failures. For example, the repair 
time may be of the order of hours, compared to times to 
failure in the order of years. 

1) Definition 

A SPP is a model that counts the number of events N  that 
occur in t . This model has as basic condition that one and 
only one event can occur at every instant. Fig. 8 shows a 
pictorial representation of a SPP; 

i
x  denotes an inter-arrival 

interval and 
i
t  an arrival time.  

 
Fig. 8. The concept of SPP 

 
A SPP model is defined by means of the parameter ( )tλ  

called the intensity function, which is defined mathematically, 
as follows: 

( ) [ ( )] / (4 )t dE N t d tλ =  

Depending on the application of the SPP, ( )tλ  can be a 

failure rate, a repair rate, a flooding rate, etc. 

2) Classification 

The tendency of the inter-arrival times allows the 
classification of SPP models shown in Fig. 9.  

 
Fig. 9. A basic classification of SPP 
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The name for a RP is given after the 'x s  distribution. The 
most famous RP is the exponential one, commonly called 
Homogeneous Poisson process (HPP). For → ∞t , the 
intensity function of every RP is a constant defined as [24]:  

( ) 1 / ( ) ( 5 )t E xλ =  

3) The Power Law NHPP 

The Power Law Process (PLP) developed by Crow in 1974 
[25] is a NHPP model that is widely used in the field of 
electrotechnics to represent the failure process of repairable 
components [26]. Its intensity function is (2). The shape 
parameter determines the tendency of the model; for 1β >  the 

tendency is positive, for 1β <  it is negative and for 1β =  the 

tendency is zero and the PLP is equal to the HPP. 

V.  THE MISCONCEPTIONS 

A.  The meaning of the term “failure rate” 

The first problem that arises is the failure rate given by (4) 
is confused with the one in (1) when a SPP is used to model 
the failure process of a repairable component. The two 
concepts are different: 
1. The failure rate (1) refers to failures that affect a 

population of identical non-repairable components and kill 
them. For a single non-repairable component, it can 
neither be calculated nor measured.  

2. The failure rate (4) refers to failures that affect a single 
repairable component if the sample was taken from a 
particular component. Also, it can refer to failures that 
affect a population of identical or non-identical repairable 
components if component failure data were pooled. 
In order to distinguish the two concepts, Ascher and 

Feingold [14] proposed the term ROCOF (Rate of Occurrence 
Of Failures) for (4). While this lexical distinction is useful, it 
is essential to understand what definition applies for 
repairable and non-repairable components; it is incorrect to 
use the definition (1) for repairable components or the 
definition (4) for non-repairable ones. However, in many 
papers (1) is presented as the failure rate of components that 
are repairable such us power transformers, generators, etc. In 
[27] Thompson discusses the uses and abuses on the 
application of (1). 

B.  The use of a life model for a repairable component 

The life model of a non-repairable component ( )ttff t  

refers to the arrival of one and only one failure that kills it. 
Thus, is incorrect to apply this concept to a repairable 
component as it can withstand several failures. But what 
happen if an analyst takes a sample of ttf  from a repairable 

component and, after applying required tests, shows that a 
given distribution is a valid representation of this failure 
process and calls it the component’s life model with failure 
rate defined by (1)? Although the procedure is correct, the 
way the analyst conceives the model is flawed:  
1. As explained before, the failure rate (1) does not apply. 

2. The distribution represents the inter-arrival times of 
failures. It can be used to calculate the probability that ttf  

is less or equal than a given value, for generating a 
sequence of time to failures or for defining a RP failure 
model with failure rate given by (5).  

3. The distribution is not a life model because it does not 
defines the death of the repairable component. Such an 
event is defined mainly by economic consideration: a 
failed component is deemed to have died and is replaced if 
its repair cost is equal or higher than its replacement cost 
or if the expected cost of its unavailability during a 
planning period is higher than its replacement cost.  

C.  A distribution can represent a non stationary random 
process 

This is the most misleading idea in reliability! A 
distribution can only be used to model stationary random 
processes. All mathematical functions used as distributions 
produce constant statistics. This fact can be easily proven 
using a bar diagram of a sequence of values generated from 
any distribution. Fig. 10 shows this for a realization of a 
Weibull distribution with λ = 5  [years] and different values of 
β . As can bee seen, in all cases there is not tendency.  

Similarly, RP are always stationary because they are 
defined on the basis of the distribution of inter arrival times. 
Thus, in [27] Thompson points out a RP cannot model 
component aging and discusses this misconception. 

This misconception originates from (1); as it can produce 
increasing or decreasing failure rates depending on the kind of 
distribution or in accordance to the value of its shape 
parameter it is believed (or more precisely, misbelieved) that 
this is a natural property of some distributions. Thus, in some 
papers a time varying failure rate is defined for a repairable 
component and without a theoretical support the ttf  are 

generated using an exponential or Weibull distribution. 

 
Fig. 10. Bar graphs of the values generated from a Weibull distribution. 
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D.  Equation (2) generates a random process whose model is 
the Weibull distribution  

This misconception is a consequence of the previous one. 
The truth is that if (2) is used as intensity function for a SPP 
or as transition rate for a Markov chain, an HPP is obtained 
when β = 1  and a non stationary one when β ≠ 1 . This can be 
proven using the algorithm given in Appendix A. More 
importantly, this is valid for any random process and not only 
for those which pertain to failures. The relationship between 
the Weibull distribution and (2) is restricted only to the case 
where the reliability of a non-repairable component is studied.  

This misconception originates in the fact that the concept 
expressed by (2) has been applied extensively in the reliability 
field forgetting in many cases its origin and meaning. For 
example: 
1. Many books and papers show it as a natural property of 

the Weibull distribution. Results obtained by means of (2) 
are only valid when referring to the reliability of a non-
repairable component, a particular result of an application 
where the Weibull distribution is applied. 

2. Many papers define the failure rate for a repairable 
component using (2) and tell it belongs to the Weibull 
distribution although they are applying a proper method 
for a non stationary analysis. This is, the analysis is correct 
but they are bringing a concept that does not apply. 

E.  A general homogeneous Markov chain can represent a 
non stationary process  

This misconception is also a consequence of 
misconception C. It is not true because a distribution always 
refers to a stationary process.  

The bar diagram shown in Fig 5 proves this for a Weibull 
distribution. In addition, let us consider now the method 
called the device of stages [19], [20]; for some pairs of 
distributions (exponential-lognormal, exponential-Weibull, 
etc.), it transforms the two state general homogeneous 
Markov chain in an exponential one that has more than two 
states. Fig. 11 shows an example: the exponential-lognormal 
chain is transformed into an exponential one where state 2 is 
replaced by k  stages in series (2S1 to 2Sk) and two stages in 
parallel (SP1 and 2P2). Transition rates ρ , ρω

1
, ρω

2
, ρ

1
, and 

ρ
2

 are constants obtained from the fourth first moments of 

the lognormal distribution. If the equivalent exponential 
Markov chain obtained using the device of stages, which is 
stationary, solves the two state general homogeneous Markov 
chain, how can the latter be not-stationary? However some 
papers apply the device of stages and say that for the case 
Weibull – lognormal it represents a non stationary process! 

This misconception originates from misbelieving the 
transition rates of a general homogeneous Markov chain are 
defined by means of (1). This is wrong because there is no 
connection between the concepts of transition rate of a 
Markov chain and hazard rate of a non repairable component. 
Concept (1) can not be extended to failures of a repairable 
component neither to other events such as repairs! 

 
Fig. 11. The device of stages for solving a given homogeneous Markov chain 

 
F.  The PLP is the same thing as a Weibull distribution.  

The arguments presented in section V-D show that this is 
false. The PLP has no connection with the Weibull 
distribution. The origin of this misconception is the fact that 
PLP intensity function is the mathematical function (2). 
However, when applying (2) it should be remembered the 
context of application:  
1.  For a non repairable component, it refers to a sequence of 

failures that affect a population of identical non-repairable 
components, not to the process of failure arrivals to a 
single non-repairable component neither to the arrival of 
other, non-failure, events. 

2. For a repairable component, it refers to a sequence of 
events that arrive. It is not confined to the case of failures. 
And in the case of failures, it can represent the process of 
failure arrival to a repairable component or to a population 
of repairable components. 

G.  The PLP is the same thing as a Weibull RP 

The arguments presented in section V-D can be used to 
show that this is a misconception. In a PLP an exponential 
stationary process is obtained when β = 1  and a non-stationary 
one when β ≠ 1 . When β = 1  it generates a HPP not a Weibull 
RP. This misconception has the same origin that the one 
discussed in section V-F.  Another factor that reinforces this 
misconception is that PLP has received other names with the 
word Weibull such us Weibull process, Weibull-Poisson 
process, Rasch-Weibull process [28]. 

H.  The only model for a stationary failure process is the HPP 

This is probably the most common of all misconceptions, 
but it is not as misleading as the one discussed in V-C. This 
statement is only valid when a sample of ttf  taken from 

repairable component shows no tendency, is independent and 
complies with the goodness of fit test for an exponential 
distribution. But, what happens if the sample shows no 
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tendency, is independent, but does not comply with a 
goodness of fit test for the exponential distribution? In this 
case, it is incorrect to assume an exponential distribution; the 
failure process of the repairable component has to be 
represented by means of the RP of a distribution that satisfies 
a goodness of fit test.  

This misconception originates again from the concept of 
failure rate for a non-repairable component (1); it produces a 
constant failure rate only for the case of an exponential 
distribution. Thus, “constant failure rate = HPP model” has 
been applied as a rule of thumb for any type of components, 
forgetting this results was obtained only for non repairable 
ones. For the case of a repairable component with stationary 
failure process, all RP are possible failure models. 

VI.  RELATIONSHIP BETWEEN SPP AND MARKOV CHAINS 

A two state Markov chain is generated by two SPP process 
as shown in Fig. 12; every time a failure arrives to the 
component it is sent from the good state to the failed one and 
every time a repair is performed, the component comes back 
to the good state; the sources of this motion are the SPP. 

 
Fig. 12. Relationship between a two state Markov chain and SPP 

 
Intensity functions ( )F tλ  and ( )R tλ  in the SPP models 

are equal to transition rates 12 ( )tλ  and 21 ( )tλ  in the Markov 

chain, respectively, regardless of whether the models are 
defined using distributions or non stationary stochastic 
processes.  

One could therefore argue that, since both types of models 
are equivalent, there is no reason to use a SPP when Markov 
chains are a more popular method. While this would be true at 
the component level, analysts usually deal with systems of 
repairable components. When dealing with large repairable 
systems, the repair process should not be included in the 
component level because [4]: 
1. It is equivalent to assume repair resources are unlimited 

because every time the component fails a crew is available 
to repair it, or in other words, there is a repair team 
dedicated to each component. Hence, an implicit 
assumption is made that repair times depend only on the 
particular actions taken to fix each type of component.  

2. As shown in Fig 13, for maintenance activities, a power 
system is usually split into several zones or service 
territories, and repair teams are assigned to each area. The 
repair process performed in each service territory is really 
a queuing system like the one shown in Fig 14. 

 
Fig. 13. Zones for maintenance in a power system 

 

 
Fig. 14. The repair process in a maintenance zone of a power system 

 
For this queuing system the following must be defined: 

• Input process:  The superimposed failure process generated 
by all components located in the service territory. These 
failures are related to service interruptions. 

• Service process: The SPP that represents the crews’ 
capacity and generates the repair times. 

• Output process: The SPP of the repairs performed by 
crews. These repairs are related to service restorations.  
Since repair resources are limited some failures will have 

to wait while others that failed before are repaired.  
SPP modeling thus makes it possible to represent the repair 

process performed in each area of a large repairable system as 
it really happens. This is something that Markov chain 
modeling is unable to do. 

VII.  CONCLUSIONS 

There are several common misconceptions about the 
modeling of repairable components for reliability studies. In 
particular, it is often assumed that SPP are identical to other 
methods currently in widespread use, for example, the popular 
analyses based on the Weibull distribution. 

All these misconceptions originate in the incorrect practice 
of analyzing the reliability of repairable components using 
concepts that were developed only for non-repairable ones 
and, specifically, in the misleading idea that a stationary 
random process model can represent a non-stationary random 
process. 

Reliability engineers must consider carefully the concepts 
of homogeneity and stationarity of random processes, the 
procedure for selecting a type of model for a random process 
and the differences among the main types of models that are 
available. 
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VIII.  APPENDIX A – ALGORITHM TO GENERATE SAMPLES FROM 

NHPP [18] 

1. Generate a sequence of n  inter arrival times 

K

' ' '

1 2
, , ,

n
x x x  of a HPP with intensity function 1.0λ =  

which covers a sample period T using:  
' 1 / * ( ) ( 1)i ix LN U A= − λ  

 Where U  is a uniformly distributed random number.  

2. Convert the sequence K

' ' '

1 2
, , ,

n
x x x  to a sequence of 

arrival times called ' ' '
1 2, , , nt t tL  using: 

' '

1

( 2)
i

i k
k

t x A
=

=∑  

3.  Find the expected number of events  

0( ) ( ) ( 3)tt t dt AΛ = ∫ λ  

4. Find ( 1−Λ ). 
5. Calculate the arrival times of the NHPP using: 

1 '( ) ( 4)i it t A−= Λ  

 6. Calculate the sequence of arrival times of the NHPP 
K

1 2
, , ,

n
x x x  using: 

1 ( 5)i i ix t t A−= −  

Where 0 0t = . 

As pointed out by Law and Kelton [18] the application of 
this algorithm depends on how easy the inversion of Λ  is.  

In the case of the PLP the recursive equation is: 
' 1/ 1 '( \ ) ( ) ( 6)t t t Aβ −= λ = Λ  
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